
kube-arbitrator: Policy based
resource sharing in Kubernetes (2)

Da Ma (@k82cn, madaxa@cn.ibm.com)

User Cases: Run multiple type of workloads in Kubernetes

● Long running service (app area) & bigdata (bigdata area) can share
resources:
o Support define resource usage of each area, e.g. 50% resources to app area, 50% to

bigdata area.

o Support borrow/lending protocol: if the resources is idle in one area, it can be lend
out and be preempted back when launch more tasks

● Run multiple cluster in bigdata area, e.g. Hadoop & Spark:
o Support define resources usage of each cluster within bigdata area

o Support sharing resources between those clusters

Motivation & Goals

“Batch” workloads

• Complex resource requirements: minimum number of resources, application notification
requirements, topology requirements

Resource Sharing/Management (Queue)

• Dynamic resource management between tenants

• Fine-grain scheduling policy

Motivation & Goals

Idea: Introduce a QueueJob and Queue controller in Kubernetes

• Queue = represents tenants for resource sharing

• QueueJob = represents a collection of objects (pods, config maps, volumes, etc) managed atomically

• QueueJobs can be queued when not enough resources are available, preempted and resized

Proposals in the community:

• https://github.com/kubernetes-incubator/kube-arbitrator

• https://docs.google.com/document/d/1-H2hnZap7gQivcSU-
9j4ZrJ8wE_WwcfOkTeAGjzUyLA/edit#heading=h.a1k69dgabg0w

Kubernetes features & gaps

● Admission Controller + Quota: static plan / allocation

● Multiple Scheduler: No QoS

● Auto-Scaling & Node-level QoS: no cluster-level QoS

● Re-scheduling & Preemption/Eviction

● Workload-specific controller & ThridPartyResources

Architect Overview

QueueJob
Controller

Queue Controller

Preemption

DRF Priority

…

kube-arbitrator

Quota Controller

BatchJob
Spark Service

Spark
Scheduler

Kube-controller-manager

Resource Request

Queue/QueueJob Quota
Admission Controller

Kube-apiserverQueue Quota

QueueJob Quota

1. kube-arbitrator’s target is to support multiple
workloads in one cluster

2. QueueJobController support batchjob as default;
other workload are supported by different
framework, e.g. Spark

3. Queue/QueueJob quota represent resource
allocation

4. ResourceRequest is also a CRD to represent
request, e.g. CPU, memory, min desired resource,
volume.

5. AdmissionController provide metrics for Request
Estimatior for Service, e.g. RC (discussing)

6. Priority is one of policies, the default policy will be
DRF

Request Estimation

Architect Overview

QueueJob {
Name
Priorty
ResReq
Volumes
…

}

QueueJob controller

QueueJob

Queue controllers

Queue

Pod
w/ Quota / Priority SetupQueueQuota

Admission Controller

Pod
Priority

Max total
in-use req.Pod

Scheduler
(w/ Priority/Preemption Support)

Pod

MVP

Upstream

Quota
Status

Config
+

ResEstimate

Queuequota admission
controller

Pod

configure configure

user

QueueJobQuota
Admission Controller

Architect Overview

k8s-apiserver k8s-controller-manager

k8s-scheduler

scheduler

arbitrator

kubelet

Pods Nodes Quota

1. Arbitrator will calculate deserved resource
(Quota.Deserved) based on Scheduler’s
configuration, arbitrator’s policy, e.g. DRF,
and namespace’s request (pending pods)

2. Arbitrator will evict Pods of overused
namespace

3. Scheduler dispatch tasks based on Quota (#
of deserved), Pods and Nodes attributes

4. Scheduler predicates “namespace will not be
overused”

kubelet predicates
extender ??

Architect Overview

Quota
hard

deserved

reserved

1. Only Compute Resource Quota and Storage
Resource Quota are available for reserved &
deserved.

2. The reserved section defines the resources that
reserved for the namespace. The total reserved
resources can not exceed cluster resources

3. The deserved is updated by arbitrator, defines the total
resources that allocated to a namespace; the deserved
resources can not exceed Quota.hard and can not
less than Quota.Reserved (exception excluded, e.g.
Node failed)

Architect Overview

scheduler

arbitrator

kubelet

Pods Nodes

Quota

kubelet

Calculate deserved resources of each
namespace based on:
1. Total resources from Nodes
2. Resource requirement from pending Pods
3. Resource requirement from running Pods
4. Reserved resource of Quota

Update Quota.deserved

3

2

Eviction
Update Eviction for
overused namespace
after grace period

1.5

Add scheduler predicate for
Quota.Deserved; if predicates
passed, scheduler selects a Node
for Pod based on attributes, e.g
PodAffinity.

1

Before launching, kubelet check scheduler ’s request: reject
overused scheduler ’s request. if node is exhaust, evict most
overused scheduler ’s request

4

Pre-emption & Reclaim

arbitrator

ns-1

Quota-1
CPU: 2
Mem: 2

arbitrator

ns-1

Quota-1
CPU: 1
Mem: 1

ns-2

Quota-2
CPU: 0
Mem: 0

arbitrator

ns-1

Quota1
CPU: 1
Mem: 1

ns-2

Quota-2
CPU: 1
Mem: 1

The arbitrator re-
calculate resource
allocation for each
namespace, shrink
the overused
namespace

The controller, who
manages overused
namespace, MUST
select a Pod to evict, or
arbitrator will evict
randomly. After eviction,
assign resources to
underused namespace

Customized arbitrator can
use smart policy for eviction,

e.g. last start first evict

Current work

Namespace: ns01

Queue: q01 Quota: rq01

Namespace: ns02

Queue: q02 Quota: rq02

Kube-arbitrator

1. The resource allocation is based on namespaces

2. User need to create a queue and a resource
quota under a queue

3. A queue contains weight and resource request

4. Kube-arbitrator collect cluster information, include
resources, pods, etc.

5. Kube-arbitrator collect all queue information and
allocate cluster resources to each queue by
weight and resource request.

6. Kube-arbitrator update resource limitation to
resource quota

7. User can submit jobs to related namespaces now.

Feature Interaction

• Workload-specific controller

The arbitrator will also evict overused namespace in workload-specific controller. The workload-
specific controller can not use more resource than Quota.Deserved. If Quota.Deserved updated, it
selects one Pods to evict; otherwise, arbitrator will evict pods (e.g. FCFS) after grace period

• Multiple-scheduler
If enable multiple-scheduler, enable only one arbitrator to avoid race condition

• Admission Controller
Arbitrator only handles Compute Resource Quota and Storage Resource Quota of
ResourceQuotaAdmission, the other metrics of ResourceQuotaAdmission will follow current
behaviors. No impact to other admission plugins

Roadmap of kube-arbitrator

• Fine-grained scheduling

• Resource request

• New quota for Queue/QueueJob

Live demo

Reference

• k8s#36716 : Manage multiple applications in Kubernetes

• Github: kubernetes-incubator/kube-arbitrator

• Design Doc: https://docs.google.com/document/d/1-H2hnZap7gQivcSU-
9j4ZrJ8wE_WwcfOkTeAGjzUyLA/edit#heading=h.a1k69dgabg0w

Thank You !

Back Up

Components

1. Arbitrator
• Calculate deserved resource number (Quota.Deserved) based on Scheduler’s configuration &

arbitrator’s policy, e.g. DRF
• Arbitrator will calculate deserved resources based on namespace
• Arbitrator will also consider namespace’s request, e.g. pending pods , when calculating deserved

resources
• Arbitrator will calculate the deserved resource by scheduling interval, e.g. 10s
• If namespace is overused, arbitrator trigger eviction for that namespace with grace period
• Arbitrator will re-use Quota by adding new section, e.g. deserved

2. Scheduler dispatch tasks based on Quota (#), Pods and Nodes attributes
• Scheduler decide which host is used based on Pods and Nodes’ attributes
• Scheduler can not use more resource than Quota.Deserved

Multiple Scheduler in Kubernetes

ETCD
API	Server

Scheduler	Controller

instance1 instance2 instance3

instance4

instance1 instance2

Scheduler Type 1

Scheduler Type 2

2 Persist

3
Assign scheduler
instances dynamically by
updating “name”
annotation

Watch and schedule
pods based on
specified scheduling
policy

Incoming Pods

Annotations:
scheduler.alpha.kubernetes.io/type = “Type1”
scheduler.alpha.kubernetes.io/policy = “PolicyA”1

Watch and
launch pods

Configure scheduler
type and instance
names

0

5
Kubelet

Node

4

Conflict	
Resolver

No QoS Guarantee!!

Support Spark natively in Kubernetes

Kubernetes Cluster

Driver
Pod Executor

Pod
Client

Spark-submit

1. Using fabric8io/kubernetes-client library (Java client
for Kubernetes & OpenShift 3)

2. New scheduling sub-classes:

• KubernetesClusterScheduler:

ü Create Driver Pods (from outside of cluster)

• KubernetesClusaterSchedulerBackend:

ü Create Executor Pods (from driver pod)

k8s-apiserver k8s-scheduler

K8s-controller-manager

No QoS Guarantee!!

Admission & Resource Quota

API	Server					

Incoming Pods

Admission
Controller

Resource	Quota

Namespace	Exist

Always	Pull	Images

……

Plugins & Extensions

1. Admission controller control and limit
the CRUD operations clients perform
synchronously

2. ResourceQuotaAdmission is one of
Admission plugins which reject pods
creation if exceed Quota

• Quota is static allocation for each namespace
• Can not calculate deserved based on namespace’s request (pending

Pods) because of creation rejection

Re-schedule & Preemption

● Arbitrator is the decision maker for preemption who defined “priority”, e.g.
under-used namespace’s priority is higher than overused namespace’s

● Re-scheduler
v Eviction for critical pods, e.g. DNS in kube-system

Arbitrator trigger the eviction for Pods in kube-system; it always “reserved” enough resources
for kube-system

v Eviction for better placement
Default scheduler trigger eviction for better placement; the pods, assigned by workload-specific
controller e.g. “computing” tasks, or marked by non-reschedulable are not re-scheduled by
default scheduler

Workload-specific Controllers & ThirdPartyResource

● Prototype based on ThirdPartyResource & workload-specific
controller

● General requirement on resource multi-tenant for Kubernetes user

● Can not leverage kubelet to resolve conflict

Horizontal and Vertical scaling / Node-level QoS

● Horizontal Vertical scaling

HPA will change replicas of deployment based on metric; not “quota” restriction to each
namespace

● Vertical Scaling

On-going, node-level

● Node-level QoS

Need a cluster-level QoS; but arbitrator’s policy need to include request & limit of QoS.

Arbitrator with Multiple-Schedulers

k8s-apiserver

k8s-controller-manager

k8s-scheduler-manager

scheduler-controller

scheduler-arbitrator

kubelet kubelet

Sched-1 Sched-2

NS1, NS2 NS3

Pods Nodes Quota
1. Scheduler is TPR

2. Scheduler-controller will start schedulers
based on RC/RS configuration

3. Scheduler-arbitrator will allocate deserved
resource (Offer) based on Scheduler’s
configuration & arbitrator’s policy, e.g. DRF

4. Scheduler dispatch tasks based on Quota
(#), Pods and Nodes attributes

