
Kubernetes 101
Doug Davis, STSM
September, 2017

2

Today's Agenda
• What is Kubernetes?
• How was Kubernetes created?
• Where is the Kubernetes community?
• Technical overview
• What's the current status of Kubernetes?
• What is next for the Kubernetes community?
• Kubernetes at IBM
• Kubernetes in the Enterprise
• Let's Get Started

3

What are Containers?
• Container: a set of processes run in isolation

• Each container gets its own:
• PID, User, UTS, Mount Points, Network Stack, etc...
• And its own view of the filesystem

• Very similar to VMs
• But process based – run just the app itself, nothing else
• No operating system, just the Linux kernel files are available

• Benefits:
• Smaller footprint – just the application's files
• Faster start-up times – just starting the exe – not even the OS

• Milliseconds vs minutes
• All adds up to better resource utilization at faster scale

Host

Containers

Base OS/Kernel

Containers
(Processes)

Container
Engine

4

What is Kubernetes?

• Provision, manage, scale applications (containers) across a cluster

• Manage infrastructure resources needed by applications
• Volumes
• Networks
• Secrets
• And many many many more...

• Declarative model
• Provide the "desired state" and Kubernetes will make it happen

• What's in a name?
• Kubernetes (K8s/Kube): "Helmsman" in ancient Greek

Enterprise Level Container Orchestration

5

How was Kubernetes created?

• Based on Google's internal "Borg" project

• Not just Open Source, but Open Governance!
• Working very hard to ensure that it is not a "Google" project
• For example, it was the reason the CNCF was created
• Pushing for non-Googlers to be in key leadership roles

• Quickly attracted the attention & support of others
• Looking for alternatives to Docker
• E.g. RedHat, CoreOS, Deis/EngineYard (now Microsoft), IBM

• One of the fastest growing OSS projects
• Which has brought many scaling challenges to deal with
• E.g. had to have "stability" releases to deal with the rapid pace of changes

Google Bringing its Cloud-Scale Expertise to OSS

6

Where is the Kubernetes community?
• Main source entry point: https://github.com/kubernetes/

• Communications
• https://github.com/kubernetes/community/blob/master/communication.md

• Mailing list / google groups:
• Devs: kubernetes-dev@googlegroups.com
• Users: kubernetes-users@googlegroups.com
• Weekly Community Meeting
• Conferences (CNCF-con & KubeCon)

• Lots of SIGs (special interest groups) for focused areas/functionality
• https://github.com/kubernetes/community/blob/master/sig-list.md
• Each with their own slack channel, mailing lists, regular calls, ...

• Leaders: Google, RedHat, CoreOS, Microsoft (Deis), IBM, Huawei

https://github.com/kubernetes/
https://github.com/kubernetes/community/blob/master/communication.md
mailto:kubernetes-dev@googlegroups.com
mailto:kubernetes-users@googlegroups.com
https://github.com/kubernetes/community/blob/master/sig-list.md

Node

7

Kubernetes: Technical Overview
• At its core, Kubernetes is a database (etcd). 

With "watchers" & "controllers" that react to changes in the DB. 
The controllers are what make it Kubernetes. 
This pluggability and extensibility is part of its "secret sauce".

• DB represents the user's desired state. 
Watchers attempt to make reality match the desired state

"API Server" is the HTTP/REST 
front-end to the DB

More on controllers later...

DB

API ServerClient/User Watcher Controller

Node

App

App

App

Networks

Volumes

Secrets

...

Request Monitor

8

Kubernetes: Resource Model

• Config Maps

• Daemon Sets

• Deployments

• Events

• Endpoints

• Ingress

• Jobs

• Nodes

• Namespaces

• Pods
• Persistent Volumes

• Replica Sets

• Secrets

• Service Accounts

• Services

• Stateful Sets, and more...

• Kubernetes aims to have the building blocks
on which you build a cloud native platform.

• Therefore, the internal resource model is the
same as the end user resource model.

Key Resources
• Pod: set of co-located containers

• Smallest unit of "code" deployment
• Application: undefined, but is a set of pods

• Several types of resources to help manage them
• Replica Sets, Deployments, Stateful Sets, ...

• Services & Endpoints
• Define how to expose your app
• Query based selector to choose which pods apply

A resource for just about any purpose

9

Kubernetes: Technical Overview
• The user directly manipulates resources via json/yaml

$ kubectl (create|get|apply|delete) -f myResource.yaml

• Some attempts to soften the UX:
$ kubectl scale ...
$ kubectl run ...
$ kubectl annotate ...

• But those are limited and not the norm

10

Kubernetes: Putting it all together...
1. User via "kubectl" deploys a new application
2. API server receives the request and 

stores it in the DB (etcd)
3. Watchers/controllers detect the resource 

changes and act upon it
4. ReplicaSet watcher/controller detects the 

new app and creates new pods to match 
the desired # of instances

5. Scheduler assigns new pods to a kubelet
6. Kubelet detects pods and deploys them 

via the container runing (e.g. Docker)
7. Kubeproxy manages network traffic 

for the pods – including service discovery 
and load-balancing

Node
Node

Pod

Base OS/Kernel

Docker
Engine

Images

LibertyUbuntu

Kublet Kube-
Proxy

Pod/Service

C C C

Master

API
Server

Controllers
Replication
Endpoints

...

Kub Client
(kubectl)

deployment.yml

Storage
(etcd)

7

1

2

3
4

6

Scheduler

5

11

What is the current status of Kubernetes?
• V1.8 - celebrated its two year birthday (July 21, 2017) since v1.0

• Some newer features
• Custom Resource Definitions replaces Third Party Resources
• Network Policy API is "stable" – control for pod->pod communication
• Encryption for data at rest in Secrets
• "Local Storage" persistent volume type was added (alpha)
• API Aggregation
• External admission controllers
• Role Based Access Control (RBAC) is in beta
• Kubeadm (tool for deploying kube) is in beta
• Node affinity/anti-affinity, taints, tolerations for scheduling

12

What's next for the Kubernetes community?

• Kubernetes is going through some growing pains
• Rapid growth (code & community)
• Finds itself needing to "slow down" at times to ensure stability

• Stability releases
• Lock down amount and rate of changes

• Aside from being a CN platform, K8s is a promoter of interop
• Container Storage Interface (CSI) w/ Docker, CF
• Container Networking Interface (CNI) w/ Docker, CF
• Open Service Broker API (SIG-ServiceCatalog) w/ CF
• Istio w/ CF

Explosive Growth – a good problem to have

13

Kubernetes at IBM

• Offerings / Plans
• Bluemix Kubernetes Service – Docker containers orchestrated by K8s
• ICp – IBM Cloud Private
• Watson is leveraging Kubernetes to hosting its infrastructure

• Key Development Activities
• Service Catalog (co-lead)
• Contributor Experience
• Networking & Istio (co-lead)
• ContainerD integration (co-lead)
• Storage
• Performance

Preferred Container Orchestration

14

Kubernetes in the Enterprise
• Line of business web applications using expected resources:

• Ingress
• Load-Balancers
• Persistent Volumes

• Customer feedback is along the lines of:
• Kubernetes is a great way to get new app up and running really fast!

15

Kubernetes: Let's Get Started
• Development Guide

• Getting Started Guide from IBM's Mike Brown
• Kubernetes Source Code Tour from IBM's Brad Topol
• Help: Ask on the appropriate SIG Slack channel

• Looking for work:
• Backlog of issues – many many open issues
• Contributor experience, testing, "process" related activities
• Find us on the Slack channel and ask questions!

• Journeys
• https://developer.ibm.com/code/journey/run-gitlab-kubernetes/
• https://developer.ibm.com/code/journey/deploy-microprofile-java-microservices-on-kubernetes/
• https://developer.ibm.com/code/events/manage-microservices-traffic-using-istio/

https://github.com/kubernetes/community/blob/master/contributors/devel/development.md
https://developer.ibm.com/opentech/2016/06/15/kubernetes-developer-guide-part-1/
https://github.com/mikebrow
https://developer.ibm.com/opentech/2017/06/21/tour-kubernetes-source-code-part-one-kubectl-api-server/
https://developer.ibm.com/opentech/2017/06/21/tour-kubernetes-source-code-part-one-kubectl-api-server/
https://github.com/bradtopol
https://github.com/kubernetes/kubernetes/wiki/Special-Interest-Groups-(SIGs)
https://github.com/kubernetes/kubernetes/issues/
https://developer.ibm.com/code/journey/run-gitlab-kubernetes/
https://developer.ibm.com/code/journey/deploy-microprofile-java-microservices-on-kubernetes/
https://developer.ibm.com/code/events/manage-microservices-traffic-using-istio/

16

Future Kubernetes Classes
• Start K8s Journey - K8s concepts and kubectl
• Connect to the world - K8s service catalog
• What makes Kubernetes smart? Scheduling in Kubernetes
• Everything is well connected and located - Kubernetes network
• Stateless vs Stateful? Kubernetes storage
• Keep healthy - Kubernetes logging and monitoring
• Play with applications - Kubernetes Helm and Charts
• What we can do for you - IBM ICp

Thank you! 
Q & A

17

18

Backup

19

Watchers and Controllers
Some examples:
1. Replica Set Controller

• Verifies the correct number of "pod" instances are active
• ReplicaSet is a scalable set of pods

2. Scheduler
• Watches for new pods and assigns them to a "kubelet"

• Pod is a group of containers that share lifecycle and container resources

3. Kubelet
• Watches for pods to be assigned to it, then deploys the pod

• Kubelet manages the pods/containers running on a host

API Server
DB

Replica Set
Controller

Scheduler

Kubelet

PodsPods
Pods

1

2

3

Client/User

Request

